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Soliton ratchetlike dynamics by ac forces with harmonic mixing
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The possibility of unidirectional motion of a kink~topological soliton! of a dissipative sine-Gordon equation
in the presence of ac forces with harmonic mixing~at least biharmonic! and of zero mean, is presented. The
dependence of the kink mean velocity on system parameters is investigated numerically and the results are
compared with a perturbation analysis based on a point-particle representation of the soliton. We find that first
order perturbative calculations lead to incomplete descriptions, due to the important role played by the soliton-
phonon interaction in establishing the phenomenon. The role played by the temporal symmetry of the system
in establishing soliton dc motions that resemble usual soliton ratchets, is also emphasized. In particular, we
show the existence of an asymmetric internal mode on the kink profile that couples to the kink translational
mode through the damping in the system. Effective soliton transport is achieved when the internal mode and
the external force get phase locked. We find that for kinks driven by biharmonic drivers consisting of the
superposition of a fundamental driver with its first odd harmonic, the transport arises only due to thisinternal
modemechanism, while for biharmonic drivers with even harmonic superposition, also a point-particle con-
tribution to the drift velocity is present. The phenomenon is robust enough to survive the presence of thermal
noise in the system and can lead to several interesting physical applications.
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I. INTRODUCTION

Transport phenomena based on nonlinear effects are a
heart of many problems in physics@1#. In this context it was
generally believed that an ac force of zero mean cannot
to directed nonzero currents. Recent studies of the so ca
ratchet effecthave shown that this belief was wrong@2#. A
ratchet system can be described as a Brownian particle i
asymmetric periodic potential, moving in a specific directi
in presence of damping, under the action of ac forces of z
average. The origin of a net motion is associated to
breaking of the space-temporal symmetries of the sys
@3,4#, leading to the desymmetrization of Le´vy flights ~for
Hamiltonian systems! @5#, and to phase locking phenomen
between the particle motion and the external driving fo
@6,7#.

This effect has a number of applications in vario
branches of physics and biology and is believed to be
basic mechanism for the functioning of biological moto
~see reviews@2#, and references therein!. The ratchet effect,
originally studied for Brownian particles, was generalized
dynamical systems@8# and to partial differential equation
~PDE! of soliton-type, mainly in the overdamped regime@9#,
or with asymmetric potentials@10–14#. In the overdamped
case, the damping in the system suppress all the degre
freedom associated with the background radiation so
soliton ratchets become very similar to point-particle rat
ets. For underdamped or moderately damped systems,
ever, the situation is quite different since the radiation fi
can interact with the soliton and influence the transport. U
derdamped soliton ratchets in asymmetric potentials
driven by sinusoidal forces, were recently investigated
Refs.@13,14#. In particular, in Ref.@13# the basic mechanism
underlying the phenomenon was identified in the existe
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of an asymmetric internal mode which couples, through
damping in the system, to the soliton translational mo
Effective transport was found when the internal mode a
the external force were phase locked. Moreover, it w
shown that the effect of soliton transport decreases with
crease of the damping, the maximal transport being achie
in the underdamped regime.

On the other hand, it is known that for ordinary differe
tial equation~ODE! systems, unidirectional transport is po
sible also in symmetric potentials if suitable asymmet
forces of zero average are applied. We remark that, altho
the term ratchet is usually used in connection with asymm
ric potentials, one can adopt a more general definition
viewing the ratchet as the result of the breakage of the s
tiotemporal symmetry of the system that relates orbits w
opposite velocities~thus producing net motion independe
on initial conditions!. This can be achieved either by deform
ing the potential and using zero average symmetric forces
by applying proper asymmetric forces with zero averages
systems with symmetric potentials. In the present paper
shall adopt this more general~symmetry based! definition of
the ratchet phenomenon@15#.

Since in concrete applications it is more easy to act on
temporal part~by using external forces! than on the spatia
part ~by inducing potential distortions! of a system, it is in-
teresting to explore transport phenomena induced by as
metric forces also in the case of soliton systems.

The present paper is just devoted to this problem. M
precisely, we show that topological solitons of nonline
PDEs with symmetric potentials can acquire finite drift v
locities in the presence of biharmonic forces of zero aver
consisting of the superposition of two harmonics, the fun
mental and one of its overtones~harmonic mixing drivers!.
Biharmonic forces were used in the literature to suppr
©2002 The American Physical Society03-1
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MARIO SALERNO AND YAROSLAV ZOLOTARYUK PHYSICAL REVIEW E 65 056603
chaos in dynamical systems and in soliton equations@16#, as
well as, to control the transport properties of single parti
ratchets@7#. In the present paper we demonstrate, on
particular example of the sine-Gordon system, that bih
monic driving forces with certain symmetries can be effe
tive to create soliton ratchets. The role played by the sy
metry of the force in establishing the phenomenon
discussed. In contrast with previous studies, we find that
direction of the net soliton motion is totally controlled by th
symmetry of the force and is independent from initial con
tions.

The phenomenon is investigated both numerically, by
rect simulations, and analytically, using soliton perturbat
theory. We show that a first order perturbation analysis of
soliton dynamics captures only the qualitative features of
phenomenon, leading to poor quantitative agreements
numerical results. The reason of this discrepancy is ascr
to the soliton-phonon interaction that is obviously missing
a point-particle description~it arises only at the second orde
in the perturbation expansion@17#!.

In general the situation can be described as follows.
sides a point-particle contribution to the drift velocity there
an equally important contribution coming from the solito
phonon interaction. This last manifests itself with the appe
ance of an internal oscillation on the soliton profile, asy
metric in space, which induces a net motion in a simi
manner as described in Ref.@13#. In particular, we show tha
this oscillation can be phase locked to the external driv
force and can couple to the kink translational mode, throu
the damping in the system. The energy, ‘‘pumped,’’ by the
field into the internal mode is then converted by the abo
mechanism into net motion of the kink. Internal oscillatio
on antikink profiles have opposite asymmetry compared
kinks, so that kink and antikink ratchets give rise to moti
in opposite directions.

The dependence of the phenomenon on system pa
eters such as the damping in the system, frequency, am
tudes, relative phase of the biharmonic driving force, as w
as, on the presence of white noise in the system, is inve
gated by means of direct numerical integrations of the s
Gordon equation. The interaction of soliton ratchets with
boundaries of a finite system is also investigated. For refl
ing edges we find that, depending on the initial velocity a
position of the kink, the ratchet dynamics can be either
stroyed or reflected as an antikink ratchet moving in the
posite direction. These results could be important for ap
cations to physical systems such as long Josephson junct
as we briefly discuss at the end of the paper.

The paper is organized as follows. In Sec. II we inves
gate the dynamics of the perturbed sine-Gordon equation
a model for soliton ratchets in the presence of asymme
forcing and damping, both in terms of symmetry argume
and first order perturbation theory. In Sec. III we study so
ton ratchets by direct numerical integrations of the pertur
sine-Gordon system and provide a consistent interpreta
of the phenomenon. Qualitative and quantitative feature
soliton ratchets are compared with the predictions of the
order perturbation analysis. The phenomenon is investig
in the deterministic case~i.e., in absence of noise! and in the
05660
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presence of a white noise term in the system. We find that
soliton ratchets are robust enough to overcome the pres
of small amplitude noises, thus making them of interest
practical applications. In Sec. IV the interaction of solito
ratchets with system boundaries is considered, while in S
V we summarize the main result of the paper and disc
possible applications of the phenomenon.

II. MODEL ANALYSIS

Direct soliton motion induced by ac signals have be
investigated in the literature mainly for ac forces with sing
harmonic content@18#. As well known, for symmetric field
potentials this situation does not lead to soliton ratchet
namics. To this regard we remark that the dc motion o
served for a sine-Gordon kink driven by single-harmon
forces in absence of damping@19#, and its generalization to
the case of small damping@20#, as well as, dc motion ob
tained from spatially inhomogeneous drivers@21#, should not
be confused with soliton ratchets. In these cases, indeed
dc motion strongly depends on the initial conditions a
quickly disappears as the damping in the system is increa
On the contrary, soliton ratchets do not depend on ini
conditions and exist also for relatively higher damping. W
remark that net soliton motion independent on initial con
tions, can be induced by the mixing of an additive and
parametric~single harmonic! driver as shown in Ref.@22# for
solitons of thef4 model.

In this section we shall investigate soliton ratchetlike d
namics in symmetric potentials driven by periodic biha
monic forces of zero mean. As a working model we take
following perturbed sine-Gordon equation:

utt2uxx1sinu52aut2E~ t !1n~x,t !, ~1!

with a denoting the damping coefficient,n(x,t) a white
noise term with autocorrelation

^n~x,t !n~x8,t8!&5Dd~x2x8!d~ t2t8!, ~2!

andE(t) a driver of the form

E~ t !5E1 cosvt1E2 cos~mvt1u!, ~3!

~the caseE2Þ0 is referred to asbiharmonic driverwith even
or odd harmonic mixing, depending onm being even or
odd!. Note that although the symmetry properties of th
driver are reduced ifE2Þ0 anduÞ0 mod p, the force is
periodic, with periodT52p/v, and has zero mean~the
analysis can be generalized to more harmonic compon
and to arbitrary nonsinusoidal periodic forces!. The unper-
turbed version of Eq.~1! @the perturbation beinge f (t)[
2E(t)2aut(x,t)# is the well known sine-Gordon equatio
with exact soliton~kinks, antikinks! solutions that depend on
a free parameter, the velocityv of the kink, which lies in the
range21,v,1.

It is of interest to investigate the conditions under which
biharmonic driver of type~3! can induce soliton ratchets i
Eq. ~1!. To this end we remark that due to the translation
invariance of the sine-Gordon system~we assume an infinite
3-2
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SOLITON RATCHETLIKE DYNAMICS BY AC FORCES . . . PHYSICAL REVIEW E 65 056603
system or a finite one with periodic boundary conditions! we
have that to each soliton trajectory with velocityv there is a
specular trajectory with the velocity2v. One can expec
that, in analogy with single particle ratchets@15#, only forces
which break thev→2v symmetry should induce net mo
tion. This argument can be formalized in terms of the ki
velocity

v5
1

2pE2`

1`

xuxtdx, ~4!

as follows ~note that one could use the momentum of t
kink as well, instead of the velocity!. Among the possible
shifts and reflections int,x, andu, we identify the symmetry
operations that change the sign ofv keeping the sign of the
topological charge

Q5
1

2pE2`

1`

uxdx, ~5!

unchanged~this means that we avoid kink antikink transfo
mations!. It is easy to check that there is only one symme
transformation that changes the sign of kink velocity a
leaves the equation of motion unchanged, i.e.,

x→2x1x0 , t→t1
T

2
, u→2u12p. ~6!

This holds true for driving fields satisfying the followin
condition:

E~ t1T/2!52E~ t !. ~7!

We remark that the above symmetry argument accounts
for the breakage of thev→2v point-particle symmetry of
the soliton, ignoring possible contributions coming from t
soliton-phonon interaction@23#. From Eq. ~3! we see that
condition~7! is always satisfied for drivers with odd mixin
while it is always broken for drivers withm even~obviously
we takeE2Þ0). Thus, thev→2v symmetry predicts that a
sine-Gordon soliton should exhibit a ratchet dynamics wh
driven by am52 force@one needs to break the symmetry~7!
to get the drift motion#, but not when driven by am53
force.

To the same conclusion one can arrive also from fi
order perturbation theory, taking as collective coordinate
satz for the kink profile

u~x,t !54arctanS expF x2X~ t !

A12Ẋ2~ t !
G D . ~8!

An ODE for kink’s center of massX(t), can be readily ob-
tained by differentiating the momentum~see Refs.@19,24#!,

P52E
2`

1`

nxn tdx, ~9!

with respect to time, and using Eq.~1! and ansatz~8! to
simplify the expression. This leads to
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52aP12pE~ t !, ~10!

or equivalently

v̇52
1

4
~12v2!@2pA12v2E~ t !14av#, ~11!

wherev(t)5Ẋ(t) and we assumed the usual relativistic r
lation P(t)58v(t)/A12v(t)2 between velocity and mo
mentum to be valid for all times. Equation~10! can be
readily solved forP(t), from which the kink velocity can be
obtained as

v5
P~ t !

8A11
P2~ t !

64

. ~12!

From this equation an analytical expression of the aver
kink velocity

^v&5
v

2pE0

T

v~ t8!dt8, T5
2p

v
, ~13!

valid in the limit Ej /Aa21( j v)2!1, j 51,2 ~i.e., small mo-
mentums or small drift velocities!, can be obtained for the
case ofm52, by expanding the square root in Eq.~12! in
series, thus giving

^v&5
3

512

E1
2E2p3

~a21v2!Aa214v2
sin~u2u0!, ~14!

u05arctanFa~a213v2!

2v3 G .

From this expression we see that the dependence of^v& on
the relative phase is perfectly sinusoidal. Similar calculatio
for them53 case show that the average kink velocity is ze
independently on the value of the relative phaseu ~as well as
of an arbitrary initial phase!.

These results can be easily understood from the effect
the symmetry properties of the force on the dynamics. In F
1 the forceE(t), viewed as a sequence of alternating puls
of equal intensities~i.e., with the same area under the curv!
and indicated by dark and light fillings in the figure, is r
ported for the casesm52,3. We see that form53 these
pulses perfectly balance so that no net motion can ar
while for m52 there is not such a balance~in both cases,
however, the average of the force is zero!.

In Fig. 2 we report the dynamics obtained from numeric
integrations of Eq.~11! for the casem52. We also show the
response of the system to the single dark and light pu
composing the force, from which we see that although th
pulses have equal intensities, the answer of the system
quite different in the two cases. Note that the negative pu
is more effective than the positive one to produce motion
one can see from the fact that the area under the nega
3-3
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MARIO SALERNO AND YAROSLAV ZOLOTARYUK PHYSICAL REVIEW E 65 056603
trajectory is greater than the one generated by the pos
pulse. This is obviously a consequence of the nonlinearity
the system~in a linear system the area under the two curv
would just be the same!. For the particular example of Fig.
~i.e.,u50) one then expects that a net motion in the nega
direction will exist. This is indeed what one finds from int
grations of the perturbation Eq.~11! with u50 @see Fig.~4!
below#.

In Fig. 3 the motion of the kink center of mass,X, ob-
tained from numerical simulations of Eq.~11! for the cases
m52,3, is also reported. We see that while a well defin
drift velocity in them52 case arises, no dc motion is prese
in them53 case, this being in agreement with our symme
analysis.

We also find that the average velocity in Eq.~13!, com-
puted after the system reached the steady state regime
pends on the relative phaseu with a low value that is well
approximated bŷ v&5A sin(u2u0), with A50.058 andu0

FIG. 1. Profiles of the biharmonic driver form52 ~continuous
line! and m53 ~dashed line! for parameter valuesE150.4, E2

50.26, v50.25, u50. For a better comparison, a time shift
4.548 and of22p was, respectively, applied tom52 andm53
cases.

FIG. 2. Time dependence of the velocityv(t) of the kink center
of mass~thick dashed curve!. The continuous line denotes the forc
profile, while the dot-dashed and dashed curves represent
response to the single dark and light pulses, respectively. The
rameters are the same as in Fig. 1 withm52 anda50.15.
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50.8. This is shown in Fig. 4 where the dependence of
average velocity onu, as computed from Eq.~11!, is re-
ported with dots, while the continuous line represents
above approximating function. Note that, although the si
soidal dependence is in perfect agreement with the appr
mate result in Eq.~14!, the explicit values ofA,u0 differ
from those predicted by Eq.~14!, these being, respectively
A50.12,u050.56~this is due to the fact that, for the chose
set of parameters, the approximation of small drift velocit
is not valid!.

The ratchetlike soliton dynamics discussed above sh
similarities with drift phenomena observed in other poin
particle systems. In particular, we mention the unidirectio
motion observed for a free particle moving in a no
Newtonian liquid with nonlinear damping under the infl
ence of an additive biharmonic drive@25#, and the nonzero
drag velocity observed for a point-particle moving on a sin
soidal washboard potential in the overdamped regime, in
presence of the same ac drive with harmonic mixing@26#. In
this last case, a dependence of the particle speed on the p
angle of the same type as in Eq.~14! with a phase shiftu0

FIG. 3. Trajectories of the kink center of mass derived from E
~11! for the casesm52 ~continuous curve! and m53 ~dashed
curve!. The other parameters are:v50.25, a50.1, E150.4, E2

50.26, andu51.61.

FIG. 4. Average velocitŷ v& of the kink center of mass vs th
relative phaseu for the same parameters as in Fig. 3. The co
tinuous curve refers to the approximating function̂v&
50.058 sin(u20.8).
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SOLITON RATCHETLIKE DYNAMICS BY AC FORCES . . . PHYSICAL REVIEW E 65 056603
5p/2, was predicted. We remark that the crossover from
sine to cosine dependence of the velocity on the phase a
occurring at high damping, can be understood in terms of
occurrence of a different symmetry condition@rather than
Eq. ~7!# that the force should violate in order to provide n
motion ~see Refs.@4,27# for more details!. This is also found
in agreement with Eqs.~14!, which show that in the limiting
casesu0→0 asa→0 andu0→p/2 asa→` @28#.

We also note that from Eq.~14! the point-particle contri-
bution to the drift velocity is expected to be cubic in th
driver amplitudes, thus implying that there could be equa
important contributions to the soliton velocity at higher o
ders of the perturbation expansion. In particular, the inter
tion of the soliton with the phonons in the system, first a
pearing at second order@17#, should not be overlooked
Although the development of a theory that includes sec
order effects is quite challenging, it is out of the purposes
the present paper~work in this direction is in progress!. In
the following section will shall instead resort to numeric
simulations of Eq.~1! for a full investigation of the problem
and for a comparison with the results of the present sect

III. NUMERICAL STUDIES

To numerically investigate sine-Gordon soliton ratch
driven by biharmonic fields, we have used standard fin
difference schemes to reduce Eq.~1! into a set of ODE that
were then integrated in time with a fourth order Runge-Ku
method. To understand the basic mechanism underlying
phenomenon we shall first concentrate on the determin
case by puttingn(x,t)50 in Eq. ~1!, and then show that the
results obtained in this case will survive in the presence
noise.

In Fig. 5 the dynamics of a sine-Gordon kink, initially
rest, driven by a biharmonic driver withm52 and by a
single-harmonic driver~i.e., E250), are reported in Figs
5~a! and 5~b!, respectively~note that we use contour plots t
show the time evolution surface generated by the kink p
file!.

From these figures we see that, in the casem52 the soli-
ton center of mass move with a constant drift velocity~note
that the shape of the kink during the motion is highly d
torted!, while for the single-harmonic driver, it oscillate
around the initial position~periodic boundary conditions ar
used in the simulation!. This demonstrates the importance
biharmonic drivers in establishing soliton ratchets.

In Fig. 6 we report the dynamics of an antikink ratch
for the same parameters values as in Fig. 5. We see tha
analogy with soliton ratchets in spatially asymmetric pote
tials @9,10,13#, antikink ratchets move opposite to kinks, th
absolute value of the drift velocity being the same.

To check the point-particle perturbation analysis of t
preceding section, we have studied the dependence of k
average velocity on system parameters for the case of a
harmonic driver withm52.

In Fig. 7 we report̂ v& as a function ofa for different
values of system parameters. Note that the curves dis
similar behaviors, with a resonance peak in the underdam
regime and a quick decay to zero at higher damping. T
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behavior is similar to the one reported in Ref.@13# for soliton
ratchets in asymmetric potentials, and suggests a pos
common mechanism of the phenomenon~see below!. We
also remark that the interruptions of the curves~cutoffs! at
small a values are due to the disappearance of the kink a
consequence of the onset of spatiotemporal chaos in the
tem ~the cutoffs delimit the borders of the existence diagr
of the kinks!.

Panel~a! of Fig. 7 shows the dependence of^v& on a for
different values of the driving frequency. Note that the v
locity is influenced by resonances with the plasma freque
and its harmonics, as one can see from the nonmonoton

FIG. 5. Contour plots of the velocity fieldux(x,t) with a
50.12, v50.25, u51.61, in the cases~a!E150.4, E250.26 and
~b!E150.66, E250.

FIG. 6. Contour plot of the velocity fieldux(x,t) of the antikink
motion. System parameters are as for Fig. 5~a!.
3-5
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MARIO SALERNO AND YAROSLAV ZOLOTARYUK PHYSICAL REVIEW E 65 056603
behavior of the cutoffs at smalla ~the cutoff velocities in
this case have their largest values close tov50.5 andv
51).

Another interesting property emerging from this figure
that the kink velocity is enhanced at low frequencies, and
average velocity decreases by increasing the frequency~al-
ready for frequencies abovev51 directed motion is hardly
visible!. This is a consequence of the kink inertia to react
fast oscillations. On the contrary drift velocities are obse
able also at quite small values ofv ~at these values, how
ever, the dynamics becomes complicated and requires
computational times—we checked explicitly the casev
50.01 for which an average drift is still visible!. The dashed
lines in the figure represent the results of the point-part

FIG. 7. The averaged kink velocity as a function of dampi
constant a with E2 /E150.65 for different system parameter
Panel ~a!: E150.4, u51.61; v50.11 (h), v50.25 (L), v
50.35 (d), and v50.65 (s). Panel~b!: v50.35, u51.61; E1

50.5 (*), E150.4 (d), E150.38 (h), E150.3 (L), E150.2
(1), and E150.1 (s). Panel~c!: v50.25, E150.4; u50 (s),
u50.8 (L), u51.2 (h), and u5p (*). The dashed lines show
results obtained from the numerical solution of Eq.~11! for v
50.11 andv50.25 in ~a!, for E150.4 in ~b!, and foru50 in ~c!.
The inset shows the dependence of the average velocity on
‘‘delay angle’’ u for a50.15 and the rest of parameters as in F
7~c!. The dashed curve in the inset shows the fitting curve~see text
for details!.
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perturbation analysis of the preceding section. We see
the agreement, although qualitatively reasonable, is no
good from a quantitative point of view.

In panel ~b! of Fig. 7 the dependence of^v& on a is
reported for different driver amplitudes~for simplicity we
have variedE1, fixing the ratioE2 /E150.65). We observe a
situation similar to the one shown in Fig. 7~a!. By increasing
the driver amplitude the system reaches the chaotic reg
and cutoff values ina quickly appear. The resonant peak
this case is quite weak and visible only for some narr
range of driving amplitudes. Also here the predictions of t
point-particle perturbation theory are quantitatively qu
poor. In the panel~c! of Fig. 7 we have shown the depen
dencê v&(a) for different values of the relative phaseu. We
see that by changingu one can change a maximum of th
curve at a given value ofa, into a minimum. This is a con-
sequence of the sinusoidal dependence of the average v
ity on u predicted by Eq.~14!. To show this, we have re
ported in the inset of the figurêv& vs u for a fixed value of
a, as computed from direct numerical integrations of t
sine-Gordon system. We see that the numerical points
well fitted by a sinusoidal law as expected from the fi
order perturbation result of the preceding section. We rem
that a similar sinusoidal dependence was also found in R
@4,26# for single ODE particle system, this confirming th
existence of a point-particle contribution to the effect. W
also note that the dependence of the soliton velocity ona
investigated in Fig. 7, displays a 1/a3 dependence in the
intermediate regiona,1 ~but a not too small! and deviates
from it at high value ofa where the decay seems to be mo
exponential-like@28# ~in the overdamped limit drift veloci-
ties are difficult to measure since due to their smallness t
require long computational times!.

In experimental situations in which the relative phase
tween the two drivers is not accessible, one should cons
u as a random variable, and a final average on it should
taken. The above results then imply that no drift velocity c
exist in these cases~soliton ratchets can be induced only
the relative phaseu remains constant in time!.

It is also interesting to note from Fig. 7~c! that reversal
currents can be induced by changing the relative phase
Fig. 8 we show how the curveu5p of Fig. 7~c!, ~which
displays current reversal at low damping!, changes as the
driving amplitude is increased. We see that by increasing
amplitude of the driver the kink velocity is increased, th
leading to an upwards shift of the curve. This means t
current reversal observed for some value ofu can be re-
moved by properly adjusting the driving amplitude~and vice
versa!. Note that a further increase of the amplitude c
change the shape of the curve destroying the resonan
character.

In Fig. 9 we report the dependence of the average velo
on the driver amplitudeE1 with the ratio E2 /E1 fixed to
0.65, and with the relative phase between the two driveru
51.61. From this figure it is clear that the kink drift velocit
depends nonlinearly on the driver amplitudeE1, with an al-
most cubic low as one can see from the log-log plot in
inset. This result is in good qualitative agreement with o
perturbation analysis~note that theE1

2E2 dependence in Eq

he
.
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~14! implies aE1
3 dependence if one fixes the ratioE1 /E2, as

done in the numerical simulations!. We remark, however
that the casev50.11, denoted by * in Fig. 9, indicates
deviation from this law at higher values ofE1.

We also checked the predictions of point-particle symm
try arguments and perturbation theory for the case of bih
monic forces with odd harmonic mixing. In Fig. 10 the d
namics of a kink driven by a biharmonic force withm53 is
reported. In contrast with the prediction of the preced
section, we see that kink can acquire a drift velocity also
this case. The direction of the motion, however, depends
only on the relative phase, but also on the initial phase~or
initial time! of the driving force. By changing the initia

FIG. 8. Dependence of the averaged velocity^v& on damping
for parameters as in Fig. 7~c! but with different amplitudes:E1

50.4 (*), E150.45 (s), andE150.5 (L). The ratioE2 /E1 has
been kept constant,E2 /E150.65.

FIG. 9. The averaged kink velocity as a function of the driv
amplitudeE1 with E2 /E150.65, u51.61. The rest of the param
eters were fixed asv50.11,a50.15(*); v50.35,a50.15 (L);
v50.35,a50.1 (s); v50.35,a50.05 (h). The inset shows the
log-log dependence.
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phase we can achieve soliton moving in the opposite dir
tion with the same velocity, thus by averaging on the init
phase one gets a zero mean velocity for the kink~simulations
of the kink dynamics with different initial phases in the in
terval @0,T# show that roughly half of that interval of initia
points yield attraction to kink solutions moving to the righ
the other half leading to kink solutions moving to the le
with the same velocity!. A similar study for the case ofm
52 did not show any dependence on the initial phase or
initial time. Due to the sensitivity on initial conditions, w
conclude that the kink motion in the casem53 is not related
to the ratchet phenomenon~this is similar to the cases re
ported in Refs.@19,20#!.

The net motion observed for them53 case for fixed val-
ues of the initial phase, however, is an interesting pheno
enon to explore by itself, since it is not linked with poin
particle features of the soliton dynamics~these are excluded
by the results of the first order perturbation theory!, and is
entirely related to the soliton-phonon interaction in a simi
way as discussed in Ref.@13#.

From the above analysis the following conclusions can
drawn. Although first order perturbation theory captur
some qualitative feature of soliton ratchets, it does not p
vide a satisfactory description of the phenomenon. This
clear both from the fact that there is a poor quantitat
agreement between the PDE results and first order pertu
tion analysis in the case ofm52, and from the fact that for
m53 it fails to predict the existence of a drift velocity de
pending on an initial phase.

The reason for this discrepancy is that this analysis
cludes only point-particle aspects of the soliton dynami
ignoring completely the internal structure of the soliton.
analogy with the mechanism described in Ref.@13#, one
could expect a strong contribution to transport coming fro
the soliton-phonon interaction. Since this interaction ari
only at second order in a perturbation expansion, this
plains why first order calculations fail to capture the ph
nomenon.

To elucidate the mechanism underlying soliton ratchet

r

FIG. 10. Contour plot of the velocity fieldux(x,t) for a sine-
Gordon kink driven by a biharmonic force withm53. System pa-
rameters are as for Fig. 5~a! excepta50.15 andu5p.
3-7
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is useful to investigate the kink dc motion in more details.
Fig. 11 we depict the kink profile while executing the ratch
dynamics in the case of am52 driver. From this figure the
existence of an internal oscillation~internal mode! of the
kink profile is clearly seen. Note that the internal mode
strongly desymmetrized with respect to the center of
kink. In the panel~a! the kink moves from the left to the
right and the mode appears behind the kink. We checked
the motion of the kink is locked to the external drive. Th
can be seen from Fig. 11~b!, which shows the kink dynamic
during two periods of the driving forceE(t). This is in
agreement with the results of Ref.@13#. The last panel,~c!,
shows the profile of the kink while moving in the oppos
direction than the one in panel~a!. Note that when the kink
moves to the left, the internal mode is on the right side fr
the kink center, so it is again behind the kink. This res
indicates that there is an evident contribution to the direc
kink motion hidden in the asymmetric character of the int
nal mode and in its interaction with the kink center of ma
The internal mode mechanism can be expected to be e
tive only in the intermediate damping regime@say a
'O(1)# since for high damping values oscillations on t
kink profile are heavily depressed~the soliton becomes like a
rigid particle!, while for very low damping internal oscilla

FIG. 11. Kink profile and dynamics fora50.15, v50.35, E1

50.5, E250.325,u51.61 ~a,b!, andu51.612p521.53 ~c!. The
profile has been computed at the time momentt5600. The dashed
line shows the profile of the kink after one period of the exter
drive.
05660
t

s
e

at

t
d
-
.
c-

tions go in competition with incoherent phonon excitatio
present in the system. We have numerically checked tha
increasing the damping the internal mode oscillation beco
smaller and smaller and almost disappears in the o
damped limit. This correlates with the above numerical
sults showing a maximum for the drift velocity of the kink
intermediate values of the damping and a rapid decreasin
a is increased.

It is worth to note that although there are no intern
modes frequencies in the spectrum of the small oscillat
problem around exact soliton solutions of the pure si
Gordon equation, these can arise from the perturbation fi
e f when it is switched on. This makes the proposed inter
mode mechanism for soliton ratchets quite general.

Let us now briefly investigate the influence of a whi
noise on the kink ratchet dynamics. In Fig. 12 we report
contour plot for the kink motion in the case of a biharmon
driver with m52. We see that the noise introduces dist
bances on the profile but does not destroy the drift motion
the soliton. We checked that this property remains true als
we increase the amplitude of the noise up to the kin
antikink nucleation limit. Moreover, the existence of the ph
nomena in presence of noise shows the validity of the ab
mechanism also for the nondeterministic soliton ratchets

IV. BOUNDARY EFFECTS ON SOLITON RATCHETS

In this section we discuss the effects of the system bou
aries on the ratchet dynamics. We have solved the prob
for two types of boundary conditions: free endsux(0,t)
5ux(L,t)50 and periodic boundary conditionsu(0,t)
5u(L,t)12pn, n561, where L is the length of the
sample. The behavior of kink and antikink solutions does
differ for both cases except, of course, for the behavior at
boundaries. For free boundaries one can show by pertu
tion theory that the kink may be destroyed at the bounda
if its incoming kinetic energy is below a certain thresho
This can be easily understood since at the boundary the
undergoes a large-amplitude oscillation that, in the prese
of damping, exposes the kink to larger dissipation~the oscil-

l

FIG. 12. Countour plot for the displacement fieldu(x,t) for
parameters as in Fig. 1~a! and noise amplitudeD50.1.
3-8



in

as
p

on
in

re
th

ow
at
de
e

o
c
by

ns
t

n

the
lso

e
ndi-
go
g
g
ext

e a
of
ar-
et

ion
, is

o-
ys-
peri-

sis
lete
ure

a
par-
ni-
on
its
on-
e
d-

s of
o-

of
ne-
the
s-

e
or-
on
the

ns
for
tep
the

of
nnu-

-
yet

a-

n a

SOLITON RATCHETLIKE DYNAMICS BY AC FORCES . . . PHYSICAL REVIEW E 65 056603
lation will be damped and the kink will not be able to atta
the 22p value and get reflected as antikink!. The synchro-
nization of the soliton motion with the external ac field,
well as the fact that kink and antikink ratchets move in o
posite directions, can allow sufficiently energetic solit
ratchets to overcome reflections in the presence of damp
This is clearly shown in Fig. 13~a! where a kink-antikink
ratchet reflection is shown.

The possibility to overcome reflection, however, requi
overcoming a critical energy threshold that depends on
system parameters. In Fig. 13~b! we show the case in which
the soliton ratchet is destroyed at the boundary. At l
damping the collision of the kink with the boundary gener
oscillations which decay, after some time, leading to the
struction of the kink~increasing the damping the decay tim
quickly decreases!.

The possibility of overcoming reflection depends also
the relative phase of the driver and the internal mode os
lation on top of the kink~this dependence can be tested
shifting the initial incoming positions of the kink!. In gen-
eral, besides kink-antikink reflections and kink destructio
more complicated phenomena can arise. These include
possibility, for particular values of damping, amplitudes, a

FIG. 13. Contour plots of kink~a! reflection and~b! annihilation
at the boundary. The system parameters arev50.11, E150.4, E2

50.26, andu51.61. The damping parameter wasa50.08 for the
case~a! anda50.12 for the case~b!. The inset shows the antikink
profile after reflection at timet53200.
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driver frequencies, to sustain a standing breather at
boundary for very long time. Similar phenomena were a
observed in Ref.@29#.

To avoid the possibility of ratchet destruction at th
boundaries one can recourse to periodic boundary co
tions. In this case soliton ratchets, once established, will
on forever~we have checked this numerically for very lon
computation times!. This opens the possibility of interestin
physical applications as we will discuss at the end of the n
section.

V. CONCLUSIONS

In this paper we have considered a way to produc
directed motion of a topological soliton in the presence
damping, by using suitable ac drivers of zero mean. In p
ticular, we showed the possibility of establishing a ratch
dynamics for a kink of the damped sine-Gordon equat
when a periodic force, consisting of two harmonic drivers
applied. In contrast to previous works, the observed dc m
tion does not require any asymmetry in the potential of s
tem, thus making the phenomena easily accessible to ex
mental situations.

We also showed that a first order perturbation analy
based on collective coordinates does not provide a comp
description of the phenomenon. The reason for this fail
was ascribed to the soliton-phonon interaction which, in
perturbation analysis, appears only at second order. In
ticular we showed that the soliton-phonon interaction ma
fests with the excitation of an internal mode on the solit
profile that, in the presence of damping, can interact with
translation mode. This provides a basic mechanism to c
vert the energy of the ac field into direct motion for th
soliton that is valid for a wide class of underdamped or mo
erately damped nonlinear systems. Numerical simulation
the sine-Gordon equation confirm the validity of the pr
posed mechanism. We also investigated the influence
boundary conditions on the ratchets dynamics in finite si
Gordon systems. For reflective boundaries we showed
possibility for soliton ratchet to overcome reflections in pre
ence of dissipation~for periodic boundary conditions th
soliton ratchet, once established, will, obviously, go on f
ever!. Finally, we showed that the phenomenon of solit
ratchet is robust enough to overcome the presence of
noise in the system.

This result opens the possibility of interesting applicatio
in different fields. In the context of Josephson junctions,
example, one can predict the existence of a zero field s
~i.e., steps in the current-voltage characteristic related to
resonant fluxon motion in the junction! in the absence of dc
bias current and in the presence of only biharmonic fields
zero average. This effect should be best observable in a
lar Josephson junctions where no boundary problems~kink
destruction! exist. We also remark that ‘‘fluxon-ratchets’’ in
ducing zero field steps in Josephson junctions, have not
been considered both theoretically and experimentally~we
will investigate this problem in more detail in a future p
per!.

Similar transport phenomena can be predicted also i
3-9
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variety of physical systems such as dislocations in cryst
spins waves in magnetic chains, etc. Adjusting the rela
phase of the drivers one could control the direction and
velocity of these excitations, this providing a way to cont
their dynamics. We hope that the results of this paper w
soon stimulate experimental work in these directions.
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